Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
J Parkinsons Dis ; 14(2): 245-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427500

RESUMO

Background: Increased activity across corticostriatal glutamatergic synapses may contribute to L-DOPA-induced dyskinesia in Parkinson's disease. Given the weak efficacy and side-effect profile of amantadine, alternative strategies to reduce glutamate transmission are being investigated. Metabotropic glutamate receptor 4 (mGlu4) is a promising target since its activation would reduce glutamate release. Objective: We hypothesized that two mGlu4 positive allosteric modulators, Lu AF21934 ((1 S,2 R)-N1-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide) and ADX88178 (5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine), would provide relief in rat and primate models of L-DOPA-induced dyskinesia. Methods: The ability of Lu AF21934 or ADX88178 to reverse pre-established dyskinesia was examined in L-DOPA-primed 6-hydroxydopamine-lesioned rats expressing abnormal involuntary movements (AIMs) or in 1-methyl-4-phenyl,1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets expressing L-DOPA-induced dyskinesia. Additionally, the ability of Lu AF21934 to prevent the development of de novo L-DOPA-induced AIMs was explored in the 6-hydroxydopamine-lesioned rats. Results: Neither Lu AF21934 (10 or 30 mg/kg p.o.) nor ADX88178 (10 or 30 mg/kg p.o.) reduced pre-established AIMs in 6-hydroxydopamine-lesioned rats. Similarly, in L-DOPA-primed common marmosets, no reduction in established dyskinesia was observed with Lu AF21934 (3 or 10 mg/kg p.o.). Conversely, amantadine significantly reduced (>40%) the expression of dyskinesia in both models. Lu AF21934 also failed to suppress the development of AIMs in 6-hydroxydopamine-lesioned rats. Conclusions: This study found no benefit of mGlu4 positive allosteric modulators in tackling L-DOPA-induced dyskinesia. These findings are concordant with the recent failure of foliglurax in phase II clinical trials supporting the predictive validity of these pre-clinical dyskinesia models, while raising further doubt on the anti-dyskinetic potential of mGlu4 positive allosteric modulators.


Assuntos
Anilidas , Ácidos Cicloexanocarboxílicos , Discinesia Induzida por Medicamentos , Doença de Parkinson , Pirimidinas , Receptores de Glutamato Metabotrópico , Tiazóis , Ratos , Animais , Levodopa/uso terapêutico , Callithrix , Doença de Parkinson/tratamento farmacológico , Oxidopamina , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/metabolismo , Antiparkinsonianos/uso terapêutico , Amantadina/farmacologia , Amantadina/uso terapêutico , Glutamatos/uso terapêutico , Modelos Animais de Doenças
2.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515319

RESUMO

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Humanos , Ratos , Masculino , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Receptor de Glutamato Metabotrópico 5 , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/prevenção & controle , Discinesia Induzida por Medicamentos/metabolismo , Oxidopamina
3.
Cell Signal ; 118: 111125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432574

RESUMO

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Assuntos
Discinesia Induzida por Medicamentos , Metformina , Humanos , Ratos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Proteínas Quinases Ativadas por AMP , Células HEK293 , Qualidade de Vida , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Oxidopamina/uso terapêutico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Metformina/farmacologia , Modelos Animais de Doenças
4.
Brain Res Bull ; 209: 110906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395109

RESUMO

OBJECTIVE: To investigate the role of the striatal extracellular signal-regulated kinase (Erk1/2) and its phosphorylation (p-Erk1/2) in aerobic training to alleviate the development of the L-DOPA induced dyskinesia (LID) in PD mice. METHODS: Forty-eight male C57BL/6 N mice were randomly divided into the 6-OHDA surgery group (6-OHDA, n=42) and the sham surgery group (Sham, n=6). A two-point injection of 6-OHDA into the right striatum was used to establish a lateralized injury PD model. PD mice were randomly divided into a PD control group (PD, n=13) and a PD exercise group (PDE, n=16), this is followed by 4 weeks of L-DOPA treatment, and PDE mice received concurrent running table training (18 m/min, 40 min/day, 5 times/week). AIM scores were performed weekly, and mice were assessed for motor function after 4 weeks using the rotarod, open field, and gait tests. Immunohistochemistry was used to test nigrostriatal TH expression, Western blot was used to determine Erk1/2 and p-Erk1/2 protein expression, and immunofluorescence double-labeling technique was used to detect Erk1/2 and p-Erk1/2 co-expression with prodynorphin (PDYN). RESULTS: (1) All AIM scores of PD and PDE mice increased significantly (P < 0.05) with the prolongation of L-DOPA treatment. Compared with PD, all AIM scores were significantly lower in PDE mice (P < 0.05). (2) After 4 weeks, the motor function of PD mice was significantly reduced compared with Sham (P < 0.05 or P < 0.01); compared with PD, the motor function of PDE mice was significantly increased (P < 0.05). (3) Compared with Sham, the expression of Erk1/2 protein, the number of positive cells of Erk1/2 and p-Erk1/2 and the number of positive cells co-expressed with PDYN were significantly increased in PD mice (P < 0.05); compared with PD, Erk1/2 protein expression was significantly decreased in PDE mice (P < 0.05), and the number of Erk1/2 and p-Erk1/2 positive cells was significantly reduced (P < 0.05). CONCLUSION: 4 weeks of aerobic exercise can effectively alleviate the development of L-DOPA-induced dyskinesia and improve motor function in PD mice. The related mechanism may be related to the inhibition of striatal Erk/MAPK signaling pathway overactivation by aerobic exercise, but this change did not occur selectively in D1-MSNs.


Assuntos
Discinesia Induzida por Medicamentos , Exercício Físico , Doença de Parkinson , Animais , Masculino , Camundongos , Antiparkinsonianos/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Levodopa , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Oxidopamina/farmacologia , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Humanos
5.
Front Immunol ; 14: 1253273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860013

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder of middle-aged and elderly people, clinically characterized by resting tremor, myotonia, reduced movement, and impaired postural balance. Clinically, patients with PD are often administered levodopa (L-DOPA) to improve their symptoms. However, after years of L-DOPA treatment, most patients experience complications of varying severity, including the "on-off phenomenon", decreased efficacy, and levodopa-induced dyskinesia (LID). The development of LID can seriously affect the quality of life of patients, but its pathogenesis is unclear and effective treatments are lacking. Glutamic acid (Glu)-mediated changes in synaptic plasticity play a major role in LID. The N-methyl-D-aspartic acid receptor (NMDAR), an ionotropic glutamate receptor, is closely associated with synaptic plasticity, and neuroinflammation can modulate NMDAR activation or expression; in addition, neuroinflammation may be involved in the development of LID. However, it is not clear whether NMDA receptors are co-regulated with neuroinflammation during LID formation. Here we review how neuroinflammation mediates the development of LID through the regulation of NMDA receptors, and assess whether common anti-inflammatory drugs and NMDA receptor antagonists may be able to mitigate the development of LID through the regulation of central neuroinflammation, thereby providing a new theoretical basis for finding new therapeutic targets for LID.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Idoso , Pessoa de Meia-Idade , Humanos , Levodopa/efeitos adversos , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato , Doenças Neuroinflamatórias , Qualidade de Vida , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Doença de Parkinson/tratamento farmacológico , Ácido Glutâmico/metabolismo
6.
Sci Rep ; 13(1): 17697, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848479

RESUMO

Dopamine transmission has been implicated in motor and cognitive function. In Parkinson's disease (PD), dopamine replacement using the precursor drug L-DOPA is the predominant treatment approach, but long-term exposure leads to the onset of dyskinesias (LIDs). Chronic L-DOPA exposure has been associated with changes in gene expression and altered cortico-striatal plasticity. The aim of this research was to assess the functional consequence of long-term L-DOPA exposure on cognitive and motor function using a rodent model of PD. Across two independent experiments, we assessed the impact of chronic L-DOPA exposure, or a control D2R agonist, on motor and cognitive function in intact and in hemi parkinsonian rats, in the absence of drug. Abnormal involuntary movements associated with LID were measured and brain tissues were subsequently harvested for immunohistochemical analysis. Exposure to chronic L-DOPA, but not the D2R agonist, impaired motor and cognitive function, when animals were tested in the absence of drug. A meta-analysis of the two experiments allowed further dissociation of L-DOPA -treated rats into those that developed LIDs (dyskinetic) and those that did not develop LIDs (non-dyskinetic). This analysis revealed impaired cognitive and motor performance were evident only in dyskinetic, but not in non-dyskinetic, rats. These data reveal a functional consequence of the altered plasticity associated with LID onset and have implications for understanding symptom progression in the clinic.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Ratos , Animais , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Ratos Sprague-Dawley , Oxidopamina/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Cognição , Modelos Animais de Doenças
7.
Pharmacol Biochem Behav ; 231: 173637, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714223

RESUMO

Group II metabotropic glutamate receptors (mGlu2/3 receptors) have been regarded as promising candidates for the treatment of L-DOPA-induced dyskinesia (LID); however, confirmation is still lacking. As the hub of the basal ganglia circuit, the striatum plays a critical role in action control. Supersensitive responsiveness of glutamatergic corticostriatal input may be the key mechanism for the development of LID. In this study, we first examined the potency of LY354740 (12 mg/kg, i.p.) in modulating glutamate and dopamine release in lesioned striatum of stable LID rats. Then, we injected LY354740 (20nmoL or 40nmoL in 4 µL of sterile 0.9 % saline) directly into the lesioned striatum to verify its ability to reduce or attenuate L-DOPA-induced abnormal involuntary movements. In experiment conducted in established LID rats, after continuous injection for 4 days, we found that LY354740 significantly reduced the expression of dyskinesia. In another experiment conducted in parkinsonism rat models, we found that LY354740 attenuated the development of LID with an inverted-U dose-response curve. The role of LY354740 in modulating striatal expressions of LID-related molecular changes was also assessed after these behavioral experiments. We found that LY354740 significantly inhibited abnormal expressions of p-Fyn/p-NMDA/p-ERK1/2/p-HistoneH3/ΔFosB, which is in line with its ability to alleviate abnormal involuntary movements in both LID expression and induction phase. Our study indicates that activation of striatal mGlu2/3 receptors can attenuate the development of dyskinesia in parkinsonism rats and provide some functional improvements in LID rats by inhibiting LID-related molecular changes.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Ratos , Animais , Levodopa/efeitos adversos , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Oxidopamina , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças
8.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569642

RESUMO

Parkinson's Disease (PD), treated with the dopamine precursor l-3,4-dihydroxyphenylalanine (L-DOPA), displays motor and non-motor orofacial manifestations. We investigated the pathophysiologic mechanisms of the lateral pterygoid muscles (LPMs) and the trigeminal system related to PD-induced orofacial manifestations. A PD rat model was produced by unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. Abnormal involuntary movements (dyskinesia) and nociceptive responses were determined. We analyzed the immunodetection of Fos-B and microglia/astrocytes in trigeminal and facial nuclei and morphological markers in the LPMs. Hyperalgesia response was increased in hemiparkinsonian and dyskinetic rats. Hemiparkinsonism increased slow skeletal myosin fibers in the LPMs, while in the dyskinetic ones, these fibers decreased in the contralateral side of the lesion. Bilateral increased glycolytic metabolism and an inflammatory muscle profile were detected in dyskinetic rats. There was increased Fos-B expression in the spinal nucleus of lesioned rats and in the motor and facial nucleus in L-DOPA-induced dyskinetic rats in the contralateral side of the lesion. Glial cells were increased in the facial nucleus on the contralateral side of the lesion. Overall, spinal trigeminal nucleus activation may be associated with orofacial sensorial impairment in Parkinsonian rats, while a fatigue profile on LPMs is suggested in L-DOPA-induced dyskinesia when the motor and facial nucleus are activated.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Transtornos Parkinsonianos , Ratos , Animais , Levodopa/farmacologia , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Transtornos Parkinsonianos/metabolismo , Doença de Parkinson/metabolismo , Oxidopamina/efeitos adversos , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Antiparkinsonianos/efeitos adversos
9.
Neurobiol Dis ; 185: 106238, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495178

RESUMO

L-DOPA-induced dyskinesia (LID) is a frequent adverse side effect of L-DOPA treatment in Parkinson's disease (PD). Understanding the mechanisms underlying the development of these motor disorders is needed to reduce or prevent them. We investigated the role of TrkB receptor in LID, in hemiparkinsonian mice treated by chronic L-DOPA administration. Repeated L-DOPA treatment for 10 days specifically increased full-length TrkB receptor mRNA and protein levels in the dopamine-depleted dorsal striatum (DS) compared to the contralateral non-lesioned DS or to the DS of sham-operated animals. Dopamine depletion alone or acute L-DOPA treatment did not significantly increase TrkB protein levels. In addition to increasing TrkB protein levels, chronic L-DOPA treatment activated the TrkB receptor as evidenced by its increased tyrosine phosphorylation. Using specific agonists for the D1 or D2 receptors, we found that TrkB increase is D1 receptor-dependent. To determine the consequences of these effects, the TrkB gene was selectively deleted in striatal neurons expressing the D1 receptor. Mice with TrkB floxed gene were injected with Cre-expressing adeno-associated viruses or crossed with Drd1-Cre transgenic mice. After unilateral lesion of dopamine neurons in these mice, we found an aggravation of axial LID compared to the control groups. In contrast, no change was found when TrkB deletion was induced in the indirect pathway D2 receptor-expressing neurons. Our study suggests that BDNF/TrkB signaling plays a protective role against the development of LID and that agonists specifically activating TrkB could reduce the severity of LID.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Camundongos , Animais , Levodopa/toxicidade , Antiparkinsonianos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Receptor trkB/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo , Receptores de Dopamina D2/metabolismo , Oxidopamina/farmacologia
10.
CNS Neurosci Ther ; 29(10): 2925-2939, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37101388

RESUMO

BACKGROUND: Levodopa (L-DOPA) is considered the most reliable drug for treating Parkinson's disease (PD) clinical symptoms. Regrettably, long-term L-DOPA therapy results in the emergence of drug-induced abnormal involuntary movements (AIMs) in most PD patients. The mechanisms underlying motor fluctuations and dyskinesia induced by L-DOPA (LID) are still perplexing. METHODS: Here, we first performed the analysis on the microarray data set (GSE55096) from the gene expression omnibus (GEO) repository and identified the differentially expressed genes (DEGs) using linear models for microarray analysis (Limma) R packages from the Bioconductor project. 12 genes (Nr4a2, Areg, Tinf2, Ptgs2, Pdlim1, Tes, Irf6, Tgfb1, Serpinb2, Lipg, Creb3l1, Lypd1) were found to be upregulated. Six genes were validated on quantitative polymerase chain reaction and subsequently, Amphiregulin (Areg) was selected (based on log2 fold change) for further experiments to unravel its involvement in LID. Areg LV_shRNA was used to knock down Areg to explore its therapeutic role in the LID model. RESULTS: Western blotting and immunofluorescence results show that AREG is significantly expressed in the LID group relative to the control. Dyskinetic movements in LID mice were alleviated by Areg knockdown, and the protein expression of delta FOSB, the commonly attributable protein in LID, was decreased. Moreover, Areg knockdown reduced the protein expression of P-ERK. In order to ascertain whether the inhibition of the ERK pathway (a common pathway known to mediate levodopa-induced dyskinesia) could also impede Areg, the animals were injected with an ERK inhibitor (PD98059). Afterward, the AIMs, AREG, and ERK protein expression were measured relative to the control group. A group treated with ERK inhibitor had a significant decrease of AREG and phosphorylated ERK protein expression relative to the control group. CONCLUSION: Taken together, our results indicate unequivocal involvement of Areg in levodopa-induced dyskinesia, thus a target for therapy development.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Camundongos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Oxidopamina/toxicidade , Antiparkinsonianos/uso terapêutico , Anfirregulina/genética , Anfirregulina/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/metabolismo , Modelos Animais de Doenças
11.
Psychopharmacology (Berl) ; 240(6): 1221-1234, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086286

RESUMO

RATIONALE: Dyskinesias induced by L-3,4-dihydroxyphenylalanine, L-Dopa (LIDs), are the major complication in the pharmacological treatment of Parkinson's disease. LIDs induce overactivity of the glutamatergic cortico-striatal projections, and drugs that reduce glutamatergic overactivity exert antidyskinetic actions. Chronic administration of immepip, agonist at histamine H3 receptors (H3R), reduces LIDs and diminishes GABA and glutamate content in striatal dialysates (Avila-Luna et al., Psychopharmacology 236: 1937-1948, 2019). OBJECTIVES AND METHODS: In rats unilaterally lesioned with 6-hydroxydopamine in the substantia nigra pars compacta (SNc), we examined whether the chronic administration of immepip and their withdrawal modify LIDs, the effect of L-Dopa on glutamate and GABA content, and mRNA levels of dopamine D1 receptors (D1Rs) and H3Rs in the cerebral cortex and striatum. RESULTS: The administration of L-Dopa for 21 days induced LIDs. This effect was accompanied by increased GABA and glutamate levels in the cerebral cortex ipsi and contralateral to the lesioned SNc, and immepip administration prevented (GABA) or reduced (glutamate) these actions. In the striatum, GABA content increased in the ipsilateral nucleus, an effect prevented by immepip. L-Dopa administration had no significant effects on striatal glutamate levels. In lesioned and L-Dopa-treated animals, D1R mRNA decreased in the ipsilateral striatum, an effect prevented by immepip administration. CONCLUSIONS: Our results indicate that chronic H3R activation reduces LIDs and the overactivity of glutamatergic cortico-striatal projections, providing further evidence for an interaction between D1Rs and H3Rs in the cortex and striatum under normal and pathological conditions.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Ratos , Masculino , Animais , Levodopa/efeitos adversos , Dopamina/metabolismo , Oxidopamina/toxicidade , Ácido Glutâmico/metabolismo , Corpo Estriado , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Córtex Cerebral/metabolismo , RNA Mensageiro/metabolismo
12.
Neurobiol Dis ; 181: 106111, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001610

RESUMO

In the past 25 years, the prevalence of Parkinson's disease (PD) has nearly doubled. Age remains the primary risk factor for PD and as the global aging population increases this trend is predicted to continue. Even when treated with levodopa, the gold standard dopamine (DA) replacement therapy, individuals with PD frequently develop therapeutic side effects. Levodopa-induced dyskinesia (LID), a common side effect of long-term levodopa use, represents a significant unmet clinical need in the treatment of PD. Previously, in young adult (3-month-old) male parkinsonian rats, we demonstrated that the silencing of CaV1.3 (Cacan1d) L-type voltage-gated calcium channels via striatal delivery of rAAV-CaV1.3-shRNA provides uniform protection against the induction of LID, and significant reduction of established severe LID. With the goal of more closely replicating a clinical demographic, the current study examined the effects of CaV1.3-targeted gene therapy on LID escalation in male and female parkinsonian rats of advanced age (18-month-old at study completion). We tested the hypothesis that silencing aberrant CaV1.3 channel activity in the parkinsonian striatum would prevent moderate to severe dyskinesia with levodopa dose escalation. To test this hypothesis, 15-month-old male and female F344 rats were rendered unilaterally parkinsonian and primed with low-dose (3-4 mg/kg) levodopa. Following the establishment of stable, mild dyskinesias, rats received an intrastriatal injection of either the Cacna1d-specific rAAV-CaV1.3-shRNA vector (CAV-shRNA), or the scramble control rAAV-SCR-shRNA vector (SCR-shRNA). Daily (M-Fr) low-dose levodopa was maintained for 4 weeks during the vector transduction and gene silencing window followed by escalation to 6 mg/kg, then to 12 mg/kg levodopa. SCR-shRNA-shRNA rats showed stable LID expression with low-dose levodopa and the predicted escalation of LID severity with increased levodopa doses. Conversely, complex behavioral responses were observed in aged rats receiving CAV-shRNA, with approximately half of the male and female subjects-therapeutic 'Responders'-demonstrating protection against LID escalation, while the remaining half-therapeutic 'Non-Responders'-showed LID escalation similar to SCR-shRNA rats. Post-mortem histological analyses revealed individual variability in the detection of Cacna1d regulation in the DA-depleted striatum of aged rats. However, taken together, male and female therapeutic 'Responder' rats receiving CAV-shRNA had significantly less striatal Cacna1d in their vector-injected striatum relative to contralateral striatum than those with SCR-shRNA. The current data suggest that mRNA-level silencing of striatal CaV1.3 channels maintains potency in a clinically relevant in vivo scenario by preventing dose-dependent dyskinesia escalation in rats of advanced age. As compared to the uniform response previously reported in young male rats, there was notable variability between individual aged rats, particularly females, in the current study. Future investigations are needed to derive the sex-specific and age-related mechanisms which underlie variable responses to gene therapy and to elucidate factors which determine the therapeutic efficacy of treatment for PD.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Ratos , Masculino , Feminino , Animais , Levodopa/efeitos adversos , Regulação para Baixo , Ratos Sprague-Dawley , Ratos Endogâmicos F344 , Discinesia Induzida por Medicamentos/metabolismo , Dopamina , Doença de Parkinson/tratamento farmacológico , RNA Interferente Pequeno , Antiparkinsonianos/farmacologia , Oxidopamina
13.
Exp Neurol ; 363: 114370, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878398

RESUMO

Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD.


Assuntos
Discinesia Induzida por Medicamentos , Neuroesteroides , Doença de Parkinson , Masculino , Ratos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/patologia , Dutasterida/metabolismo , Dutasterida/farmacologia , Dutasterida/uso terapêutico , Oxidopamina/toxicidade , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças
14.
Mol Biol Rep ; 50(5): 4535-4549, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36853472

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder caused by the degeneration of dopaminergic neurons. This leads to the pathogenesis of multiple basal ganglia-thalamomotor loops and diverse neurotransmission alterations. Dopamine replacement therapy, and on top of that, levodopa and l-3,4-dihydroxyphenylalanine (L-DOPA), is the gold standard treatment, while it develops numerous complications. Levodopa-induced dyskinesia (LID) is well-known as the most prominent side effect. Several studies have been devoted to tackling this problem. Studies showed that metabotropic glutamate receptor 5 (mGluR5) antagonists and 5-hydroxytryptamine receptor 1B (5HT1B) agonists significantly reduced LID when considering the glutamatergic overactivity and compensatory mechanisms of serotonergic neurons after L-DOPA therapy. Moreover, it is documented that these receptors act through an adaptor protein called P11 (S100A10). This protein has been thought to play a crucial role in LID due to its interactions with numerous ion channels and receptors. Lately, experiments have shown successful evidence of the effects of P11 blockade on alleviating LID greater than 5HT1B and mGluR5 manipulations. In contrast, there is a trace of ambiguity in the exact mechanism of action. P11 has shown the potential to be a promising target to diminish LID and prolong L-DOPA therapy in parkinsonian patients owing to further studies and experiments.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Humanos , Levodopa/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/patologia , Doença de Parkinson/tratamento farmacológico , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Dopamina/metabolismo , Dopamina/farmacologia , Dopamina/uso terapêutico
15.
Psychiatry Res ; 317: 114791, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030699

RESUMO

Genome-wide association studies (GWAS) have identified some variants for movement-related adverse antipsychotic effects (MAAE), while how these variants confer MAAE remains unclear. We used the probabilistic Mendelian randomization (PMR) method to identify candidate proteins for MAAE by integrating MAAE GWASs and protein quantitative trait loci (pQTL) data. An independent pQTL data from the Banner project and brain-derived eQTL data were used to perform confirmatory PMR. A total of 56 proteins were identified as candidate targets for MAAE after false discovery rates (FDR) correction, such as GRIN2B, ADRA1A, and PED4B. 12 genes were replicated in the confirmatory PMR, and 18 genes had consistent evidence at the transcript level. Furthermore, we investigated the associations between candidate proteins and the motor symptoms of Parkinson's disease (PD). There were 24, 38, and 10 candidate proteins that were significantly associated with PD, PD motor subtypes, and PD motor progression, respectively. Enrichment analysis identified 34 GO terms and 17 pathways that may be involved in MAAE, such as glutamatergic synapse, glutamate receptor complex, and GABAergic synapse. Our study identified multiple candidate genes and pathways that were associated with MAAE, providing new insights into the biological mechanism of MAAE and targets for further mechanistic and therapeutic studies.


Assuntos
Antipsicóticos , Discinesia Induzida por Medicamentos , Doença de Parkinson , Proteoma , Humanos , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Proteoma/metabolismo , Análise da Randomização Mendeliana , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/metabolismo , Locos de Características Quantitativas
16.
Nat Commun ; 13(1): 3211, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680891

RESUMO

Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/efeitos adversos , Cerebelo/metabolismo , Discinesia Induzida por Medicamentos/complicações , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/prevenção & controle , Humanos , Levodopa/efeitos adversos , Camundongos , Doença de Parkinson/tratamento farmacológico
17.
Neurosci Res ; 178: 93-97, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150767

RESUMO

Intermittent administration of L-dopa in Parkinson's disease is associated with L-dopa-induced dyskinesia (LID). Long-acting dopamine agonists may reduce the risk of LID by continuous dopaminergic stimulation. We examined the LID-like behavior, preprodynorphin messenger ribonucleic acid (mRNA) expression in the striatum (a neurochemical LID hallmark), and the volume of the entopeduncular nucleus (a pathological LID hallmark) in Parkinson's disease rat models that were treated with L-dopa and cabergoline. Cabergoline co-treatment with L-dopa reduced LID, striatal preprodynorphin mRNA expression, and hypertrophy of the entopeduncular nucleus, indicating that cabergoline has an anti-LID effect independent of the L-dopa-sparing effect.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/efeitos adversos , Cabergolina/metabolismo , Cabergolina/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Exp Neurol ; 347: 113920, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762921

RESUMO

Parkinson's disease (PD) is a complex multisystem, chronic and so far incurable disease with significant unmet medical needs. The incidence of PD increases with aging and the expected burden will continue to escalate with our aging population. Since its discovery in the 1961 levodopa has remained the gold standard pharmacotherapy for PD. However, the progressive nature of the neurodegenerative process in and beyond the nigrostriatal system causes a multitude of side effects, including levodopa-induced dyskinesia within 5 years of therapy. Attenuating dyskinesia has been a significant challenge in the clinical management of PD. We report on a small molecule that eliminates the expression of levodopa-induced dyskinesia and significantly improves PD-like symptoms. The lead compound PD13R we discovered is a dopamine D3 receptor partial agonist with high affinity and selectivity, orally active and with desirable drug-like properties. Future studies are aimed at developing this lead compound for treating PD patients with dyskinesia.


Assuntos
Antiparkinsonianos/toxicidade , Dopaminérgicos/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Transtornos Parkinsonianos/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Callithrix , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Discinesia Induzida por Medicamentos/prevenção & controle , Células HEK293 , Humanos , Ligantes , Transtornos Parkinsonianos/prevenção & controle , Primatas , Estrutura Secundária de Proteína , Quimpirol/farmacologia , Quimpirol/uso terapêutico , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/química
19.
Mol Neurobiol ; 59(2): 1140-1150, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34855116

RESUMO

The existence of few biomarkers and the lack of a better understanding of the pathophysiology of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD) require new approaches, as the metabolomic analysis, for discoveries. We aimed to identify a metabolic profile associated with LID in patients with PD in an original cohort and to confirm the results in an external cohort (BioFIND). In the original cohort, plasma and CSF were collected from 20 healthy controls, 23 patients with PD without LID, and 24 patients with PD with LID. LC-MS/MS and metabolomics data analysis were used to perform untargeted metabolomics. Untargeted metabolomics data from the BioFIND cohort were analyzed. We identified a metabolic profile associated with LID in PD, composed of multiple metabolic pathways. In particular, the dysregulation of the glycosphingolipid metabolic pathway was more related to LID and was strongly associated with the severity of dyskinetic movements. Furthermore, bile acid biosynthesis metabolites simultaneously found in plasma and CSF have distinguished patients with LID from other participants. Data from the BioFIND cohort confirmed dysregulation in plasma metabolites from the bile acid biosynthesis pathway. There is a distinct metabolic profile associated with LID in PD, both in plasma and CSF, which may be associated with the dysregulation of lipid metabolism and neuroinflammation.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Cromatografia Líquida , Discinesia Induzida por Medicamentos/metabolismo , Humanos , Levodopa/efeitos adversos , Metaboloma , Doenças Neuroinflamatórias , Doença de Parkinson/tratamento farmacológico , Espectrometria de Massas em Tandem
20.
Niger J Physiol Sci ; 37(2): 175-183, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243560

RESUMO

L-DOPA, the gold standard for managing Parkinson's disease (PD) is fraught by motor fluctuations termed L-Dopa-Induced Dyskinesia (LID). LID has very few therapeutic options. Hence, the need for preclinical screening of new interventions. Cholecalciferol (VD3) treatment reportedly improves motor deficit in experimental Parkinsonism. Therefore, the novel anti-dyskinetic effect of VD3 and its underlying mechanisms in LID was investigated. Dyskinesia was induced by chronic L-DOPA administration in parkinsonian (6-OHDA- lesioned) mice. The experimental groups: Control, Dyskinesia, Dyskinesia/VD3, and Dyskinesia/Amantadine were challenged with L-DOPA to determine the abnormal involuntary movements (AIMs) score during 14 days of VD3 (30 mg/kg) or Amantadine (40 mg/kg) treatment. Behavioral Axial, Limb & Orolingual (ALO) AIMs were scored for 1 min at every 20 mins interval, over a duration of 100 mins on days 1,3,7,11 and 14. Using western blot, striatum was assessed for expression of dopamine metabolic enzymes: Tyrosine Hydroxylase (TH) and Monoamine Oxidase-B (MAO-B); CD11b, BAX, P47phox, and IL-1ß. Cholecalciferol significantly attenuated AIMs only on days 11 & 14 with maximal reduction of 32.7%. Expression of TH and MAO-B was not altered in VD3 compared with dyskinetic mice. VD3 significantly inhibited oxidative stress (P47phox), apoptosis (BAX), inflammation (IL-1ß) and microglial activation (CD11b). VD3 showed anti-dyskinetic effects behaviorally by attenuating abnormal involuntary movements, modulation of striatal oxidative stress, microglial responses, inflammation, and apoptotic signaling; without affecting dopamine metabolic enzymes. Its use in the management of dyskinesia is promising. More studies are required to further evaluate these findings. Keywords: Cholecalciferol; L-DOPA-Induced Dyskinesia; Parkinson's Disease; Microglial; Oxidative stress; Inflammation.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Ratos , Camundongos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Dopamina/metabolismo , Dopamina/uso terapêutico , Microglia/metabolismo , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Proteína X Associada a bcl-2/uso terapêutico , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Amantadina/uso terapêutico , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...